
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2014) 000–000

1st International Workshop “From Dependable to Resilient, from Resilient to Antifragile
Ambients and Systems” (ANTIFRAGILE 2014)

Antifragility =
Elasticity + Resilience +Machine Learning

Models and Algorithms for Open System Fidelity

Vincenzo De Florio∗

PATS research group, University of Antwerp & iMinds Research Institute, Middelheimlaan 1, 2020 Antwerpen, Belgium

Abstract

We introduce a model of the fidelity of open systems—fidelity being interpreted here as the compliance between corresponding
figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony,
in which the figure of interest is the physical and the system’s notion of time. Our model covers two orthogonal aspects of fidelity,
the first one focusing on a system’s steady state and the second one capturing that system’s dynamic and behavioural characteristics.
We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect’s qualities and
limitations. Finally we sketch the elements of a new model coupling both of the first model’s aspects and complementing them
with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional
criteria for antifragile systems.
c© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Resilience, computational antifragility, antifragile engineering, elasticity

1. Introduction

As well-known, open systems are those that continuously communicate and “interact with other systems outside
of themselves”1. Modern electronic devices2 and cyber-physical systems3 are typical examples of open systems that
more and more are being deployed in different shapes and “things” around us. Advanced communication capabilities
pave the way towards collective organisation of open systems able to enact complex collective strategies4 and self-
organise into societies5, communities6,7, networks8, and organisations9.

One of the most salient aspects of open systems—as well as a key factor in the emergence of their quality—is
given by the compliance between physical figures of interest and their internal representations. We call this property
as fidelity. A high fidelity makes it possible to build “internal” models of “external” conditions, which in turn can
be used to improve important design goals—including performance and resilience. Conversely, low fidelity results in
unsatisfactory models of the “world” and the “self”—an argument already put forward in Plato’s Cave.

As an example, real-time systems are open systems that mainly focus on a single figure—physical time. Such
figure is “reified” as cybertime—an internal representation of physical time. Intuitively, the more accurately the

∗ Corresponding author. Tel.: +32-3-2653905; fax: +32-3-2653777.
URL: https://www.uantwerp.be/en/staff/vincenzo-deflorio (Vincenzo De Florio)

1877-0509 c© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki.



V. De Florio / Procedia Computer Science 00 (2014)

internal representation reflects the property of a corresponding physical dimension, the higher will be the quality
exhibited by such class of open systems.

In what follows we consider the more general case of n-open systems, namely systems that interact with environ-
ments represented through n context figures. This means that, through some sensory system and some sampling and
conversion algorithms, each of these n context figures is reified in the form of an internal variable reflecting the state
of the corresponding figure. These “reflective variables”10 are the computational equivalent of the biological concept
of qualia (pl. quale)11 and represent an open system’s primary interface to their domains of intervention (typically,
the physical world.)

This work introduces two models for the fidelity of n-open systems. Each of those models provides a different view
to an n-open system’s nature and characteristics.

The first model is presented in Sect. 2 and mainly focuses on elasticity support to fidelity. Quality is reached
through simple schemes with as limited as possible an overhead and as low as possible an impact on functional design
goals. Resource scheduling, redundancy, and diversity are mostly applied through worst-case analyses and at design-
time, possibly with simple switching among Pareto-optimal strategies during the run-time2. As mentioned above, the
key strategy in this case is elasticity: unfavourable changes and faults are meant to be masked out and counterbalanced
by provisions that do not require intensive system reconfigurations. This model considers the system and its intended
deployment environments as known and stable entities (cf. synchronous system model12) and identifies a snapshot of
the system in its intended (viz., “normal”) operational conditions.

Conversely, our second model—introduced in Sect. 3—is behavioural and focuses on resilience support to fidelity.
Systems and their environments are regarded as dynamic systems whose features are naturally drifting in time (as it
is the case, e.g., in the timed-asynchronous system model13). Corresponding variations in the operational conditions
within and without the system boundaries may be tolerated through different strategies, and this model focuses on the
quality of the behaviours that a system may employ, during the run-time, in order to guarantee its fidelity despite those
variations.

A discussion is then elaborated in Sect. 4. Positive and negative aspects of both models are highlighted. Then
it is shown how the two models may co-exist by distinguishing between normal and critical conditions. A general
scheme for context-conscious switching between elasticity and resilience strategies is proposed. Said scheme also
incorporates a machine learning step such that the system may acquire some form of “wisdom” as a by-product of
past history. A conjecture is put forward that the general scheme may represent a first preliminary step towards the
engineering of antifragile systems14, namely systems not merely able to tolerate adverse conditions, but rather able
to strengthen in the process their ability to do so.

Section 5 finally concludes with a view to our future work.

2. Algebraic Model

Here we introduce our first model of fidelity. First the main objects of our treatise are presented in Sect. 2.1.
Section 2.2 follows and introduces our Algebraic model based on those objects.

2.1. Formal entities

As mentioned in Sect. 1, open systems are those computer systems that interact with a domain they are immersed
in. A prerequisite to the quality of this interaction is the perception15 of a domain- and application-specific number
of figures, say 0 < n ∈ N. The quality of the perception services is the cornerstone to fidelity16, the latter taking the
shape of, e.g., optimal performance, strong guarantees of real-timeliness and safety, high quality of experience, etc.

Perception in n-open systems is modelled in what follows as a set of functions qi, 0 < i ≤ n, defined between
pairs of Algebraic structures, Ui and Ci, 0 < i ≤ n, respectively representing sets of physical properties of interest
(called in what follows “raw facts”) and sets of their corresponding computer-based operational representations—their
“reflective variables”, or “quale”. “Reflective maps” is the term we shall use to refer to the above functions.

Let us refer as U and C respectively as to any of the Ui and Ci, and as q to any of the reflective maps. Thus, if
u ∈ U is, e.g., the amount of light emitted by a light-bulb, then q(u) may for instance be a floating point number



V. De Florio / Procedia Computer Science 00 (2014)

stored in some memory cells and quantifying the light currently emitted by the bulb as perceived by some sensor and
as represented by some sampling and conversion algorithm. A reflective map takes the following general form:

q : U → C (1)

and obeys the following Condition: ∀u1, u2 ∈ U : q(u1 + u2) = q(u1) + q(u2) + ∆. (2)
Here overloaded operator “+” represents two different operations:

• In U, as in the expression on the left of the equal sign, operator “+” is the property resulting from the com-
position of two congruent physical properties. As an example, this may be the amount of light produced by
turning on two light-bulbs in a room, say light-bulb l1 and light-bulb l2. (Note that the amount of light actually
perceived by some entity in that room will depend on the relative positions of the light-bulbs and the perceiver
as well as on the presence of obstructing objects in the room, and other factors.)
• In C, as in the expression on the right of the equal sign, operator “+” is the algorithm that produces a valid

operational representation of some property by adding any two other valid representations of the same property.
In the above example, the operator computes the qualia corresponding to the sum of the quale representing the
light emitted by l1 with that of l2.

Let ∆ be a variable representing any ∆i, 0 < i ≤ n, in turn defined as the “preservation distance” of reflective map
qi, meaning that qi would preserve operation “+” were it not for the extra ∆i. Quantity ∆ thus represents an error
value that depends on the nature of the involved properties; their operational representations; and “the environment”,
the latter being modelled as a set of context figures representing the hardware and software platforms; the operational
conditions; the user behaviours; and other factors. Environmental conditions shall be cumulatively represented in
what follows as vector ~e.

2.2. Model

Function (1) and Condition (2.1) may be used to characterise concisely the fidelity of an n-open system, namely
how coherent, consistent, and robust is the reflection in Ci of the physical properties ofUi, 0 < i ≤ n. Our exemplary
focus in the rest of this section will be that of real-time systems (namely 1-open systems whose domains of interests
are cybertime1 and physical time) though this will not affect the generality of our treatise. In the rest of this section
C will refer to cybertime and U to physical time. The corresponding reflective map shall be simply referred to as q
while ∆ shall be q’s preservation distance.

The formal cornerstone of our model is given by the concept of isomorphism—a bijective map between two Al-
gebraic structures characterised by a property of operation preservation. As well-known, a function such as reflective
map q is an isomorphism if it is bijective and if the preservation distance ∆ is equal to zero. In this case the two
domains, C and U, are in perfect correspondence: any action (or composition thereof) occurring in either of the two
structures can be associated with an equivalent action (resp. composition) in the other one. In the domain of time, this
translates in perfect equivalence between the physical and artificial concept of time—between cybertime and physical
time that is. Different interpretations depend on the domain of reference. As an example, in the domain of safety, the
above correspondence may mean that the consequence of C-actions in terms of events taking place in U be always
measurable and controllable—and vice-versa.

Obviously the above flawless correspondence only characterises a hypothetically perfect computer system able to
sustain its operation in perfect synchrony with the physical entities it interacts with—whatever the environmental con-
ditions may be. The practical purpose of considering such a system is that, like Boulding’s transcendental systems17

or Leibniz’s Monads and their perfect power-of-representation18, it is a reference point. By identifying specific differ-
ences with respect to said reference point we can categorise and partition existing families of systems and behaviours
as per the following definitions.

1 We shall refer in what follows to any artificial concept of time, as manifested for instance by the amount of clock ticks elapsed between any
two computer-related events, as to “cybertime”.



V. De Florio / Procedia Computer Science 00 (2014)

Definition 1 (Hard real-time system). A hard real-time system is the best real-life approximation of a perfect real-
time system. Though different from zero, its preservation distance (the ∆ function, representing in this case the system’s
“tardiness”) has a bound range (limited by an upper threshold) equal to a “small” interval (drifts and threshold are,
e.g., one order of magnitude smaller than the reference time unit for the exercised service). A hard real-time system is
typically guarded, meaning that the system self-checks its preservation distance.

We shall call “t-hard real-time system” a system that matches the conditions in Definition 1 with threshold t.

Definition 2 (Soft real-time system). A system is said to be “soft real-time” if its preservation distance ∆ is sta-
tistically bound. As in hard real-time systems, a threshold characterises the ∆ error function, but that threshold is
an average value, namely there is no hard guarantee, as it was the case for hard real-time systems, that the error
will never be overcome. Both threshold and its standard deviation are “small”. As hard real-time systems, also soft
real-time systems are typically guarded—viz., they self-check their tardiness (preservation distance.)

In what follows we shall call “(t, σ)-soft real-time system” a system that matches the conditions in Definition 2
with average threshold t and standard deviation σ.

Definition 3 (Best-effort real-time system). A system is said to be “best-effort” if care and experience have been
put to use, up to a certain degree2, in order to design and craft that system; said care and experience, to the best of the
current knowledge and practise, should allow the ∆ values experienced by the users to be considered as “acceptable”,
meaning that deviations from the expected behaviours are such that the largest possible user audience shall not be
discouraged from making use of the system. Internet-based teleconferencing systems are examples of systems in this
category. Unlike hard and soft real-time systems, best effort systems do not monitor the drifting of their ∆3.

It is important to highlight once more how function ∆ is also a function of ~e—the environmental conditions.
As mentioned already, the above conditions include those pertaining to the characteristics and the current state of
the deployment platform. As a consequence of this dependency, special care is required to verify that the system’s
deployment and run-time hypotheses will stay valid over time. Sect. 3 specifically covers this aspect. Assumption
failure tolerance19 may be used to detect and treat deployment and run-time assumption mismatches.

Definition 4 (Non-real-time system). A non real-time system is one that is employed, deployed, and executed, with
no concern and no awareness of the drifting of function ∆. With respect to time, the system is context-agnostic and is
meant to be used “as is”—without any operational or quality guarantee.

Definitions 1–4 can be used to partition systems into disjoint blocks (or equivalence classes). Said classes may be
regarded as “contracts” that the systems need to fulfil in order to comply to their (real-timeliness) specifications.

Definition 5 (System identity). We define as system real-time identity (in general, its system identity) the equivalence
class a (real-time) system belongs to.

We now discuss a second and complementary aspect—system behaviour and its effect on the correspondence
between C andU.

3. Behavioural Model

As already hinted in Sect. 1, our Algebraic model and its Definitions 1–4 do not cover an important aspect of open
systems1, namely the fact that, in real-life, the extent and the rate of the environmental changes may (as a matter of
fact, shall) produce a sensible effect on ~e (and thus, on ∆) even when the system has been designed with the utmost

2 A trade-off between design quality, usability, time-to-market, costs and other factors typically affects and limits the employed care.
3 In some cases monitoring data are gathered from the users. As an example, the users of the Skype teleconferencing system are typically asked

to provide an assessment of the the quality of their experience after using the service. This provides the Skype administrators with statistical data
regarding the ∆’s experienced by their users.



V. De Florio / Procedia Computer Science 00 (2014)

care. In this case the system may experience an “identity failure”, namely a drift4 that produces a loss of the system
identity (cf. Def. 5).

In order to capture a system’s ability to detect, mask, tolerate, or anticipate identity failures, that system needs to
enact a number of resilient behaviours21,15. In what follows we first briefly introduce the concepts of resilience and
behaviours (respectively in Sect. 3.1 and Sect. 3.2) and then discuss in Sect. 3.3 how resilient behaviours constitute a
second “parameter” with which one may characterise salient aspects of the fidelity of open systems.

3.1. Resilience

Resilience is a system’s ability to retain certain characteristics of interest throughout changes affecting itself and its
environments. By referring to Sect. 2.2 and in particular to Def. 5, resilience may be defined as robust system identity
persistence, namely a system’s “ability to pursue completion (that is, one’s optimal behaviour) by continuously re-
adjusting oneself”15. Resilience closely corresponds to the Aristotelian concept of entelechy22,23, namely “exercising
activity in order to guarantee one’s identity”, or to “comply to one’s ‘definition’.”

As suggested in21, resilience calls for (at least) the following three abilities:

• Perception, namely the ability to become timely aware of some portion of the raw facts in the environment (both
within and without the system boundaries).
• Awareness, which “defines how the reflected [raw facts] are accrued, put in relation with past perception, and

used to create dynamic models of the self and of the world”24,15.
• Planning, namely the ability to make use of the Awareness models to compose a response to the changes being

experienced.

A general scheme for robust system identity persistence is then given by the following three phases:

1. Monitor the drifting of the ∆ functions.
2. Build models to understand how the drifting is impacting on one’s system identity.
3. Plan and enact corrective actions such that the system identity is not jeopardised.

Phases 2. and 3. refer to the concept of behaviour—which is the subject of next subsection.

3.2. Behaviour

Behaviour is defined in25 as “any change of an entity with respect to its surroundings5”. In the context of this
paper behaviour is to be meant as any change an entity enacts in order to sustain its system identity. In other words,
behaviour is the response a system enacts in order to be resilient. In the cited paper the authors discuss how the
above mentioned response may range from simple and predefined reflexes up to complex context-aware strategies.
The following classes are identified:

1. Passive behaviour: the system is inert, namely unable to produce any “output energy”.
2. Active, non-purposeful behaviour. Systems in this class, albeit “active”, do not have a “specific final condition

toward which they strive”.
3. Purposeful, non-teleological (i.e., feedback-free) behaviour. A typical example of systems exercising this type

of behaviour is given by servo-mechanisms.
4. Teleological, non-extrapolative behaviours are those typical of reactive systems. A feedback channel provides

those systems with “signals from the goal”. Behaviour is then adjusted in order to get “closer” to the goal as
it was perceived through the channel. Reactive systems function under the implicit hypothesis that the adjusted
behaviours bring indeed the system closer to the goals.

4 The problem of system identity drift going undetected is one that may produce serious consequences—especially in the case of safety-critical
computer systems. Quoting Bill Strauss, “A plane is designed to the right specs, but nobody goes back and checks if it is still robust” 20.

5 Here and in what follows, when not explicitly mentioned otherwise, quotes are from 25.



V. De Florio / Procedia Computer Science 00 (2014)

5. Predictive behaviours are typical of proactive systems, namely systems that base their action upon a hypothesised
future state computed through some model. In25 predictive behaviours are further classified according to their
“order”, namely the amount of context variables their models take into account. Thus a system tracking the
speed of another system to anticipate its future position exhibits first-order predictive behaviours, while one that
considers, e.g., speed and flightpath, is second-order predictive. Systems constructing their models through the
correlation of two or more “raw fact” dimensions, possibly of different nature, are called higher-order predictive
systems.

The above model of individual behaviour may be naturally extended by considering collective behaviours—namely
the conjoint behaviours of multiple individual systems. We distinguish three major classes of collective behaviour:

1. Neutral social behaviour. This is the behaviour resultant from the collective action of individual, purposeful, non
teleological behaviours. Each participant operates through simple reflexes, e.g., “in case of danger get closer
to the flock”. Lacking a “signal from the goal”, the rationale of this class of collective behaviours lies in the
benefits deriving by the sheer number of replicas available. Examples include defencive behaviour of a group of
individuals from a predator and group predation.

2. Individualistic social behaviour. This is the social behaviour of systems trying to benefit opportunistically in a
regime of competition with other systems. Here participants make use of more complex behaviours that take into
account the social context, namely the behaviours exercises by the other participants. It is worth noting how even
simple “systems” such as bacteria may exercise this class of behaviour26.

3. Cooperative or coopetitive social behaviours. These are social behaviours of systems able to establish mutualistic
relationships (mutually satisfactory behaviours) and to consider proactively the future returns deriving from a loss
in the present. Examples of behaviours in this class are, e.g., the symbiotic relationships described in6,27.

As a final remark we deem worth noting how resilience and change tolerance are not absolute properties: in fact
they emerge from the match with the particular conditions being exerted by the current environment. This means that
it is not possible to come up with an “all perfect” solution able to withstand whatever such condition. Nature’s answer
to this dilemma is given by redundancy and diversity. Redundancy and diversity are in fact key defence frontlines
against turbulent and chaotic events affecting catastrophically an (either digital or natural) ecosystem. Multiple and
diverse “designs” are confronted with events that determine their fit. Collective behaviours increase the chance that
not all the designs will be negatively affected. In this sense we could say that “resilience abhors a vacuum”, for empty
spaces—namely unemployed designs and missed diversity—may potentially correspond to the very solutions that
would be able to respond optimally to a catastrophic event.

A treatise of collective behaviours is outside the scope of this paper. Interested readers may refer to, e.g.,4,26,28,29.

3.3. Fragility as a measure of assumptions dependence

The type of behaviour exercised by a system constitutes—we deem—a second important characteristic of that
system with reference to its ability to improve dynamically its system-environment fit. This “second coordinate”
of a system’s fidelity to systemic, operational, and environmental assumptions is meant to bring to the foreground
how dependant an open system actually is on its system model—namely, on its prescribed assumptions and working
conditions30,12.

Classes of resilient behaviours allow us to assess qualitatively a system’s “fragility” (conversely, robustness) to
the variability of its environmental and systemic conditions. As an example, let us consider the case of traditional
electronic systems such as, e.g., the flight control system that was in use in the maiden flight of the Ariane 5 rocket.
A common trait in such systems is that enacted behaviours are mostly very simple (typically purposeful but non-
teleological). While this enhances efficiency and results in a lean and cost-effective design, one may observe that it
also produces a strong dependence on prescribed environmental conditions. It was indeed a mismatch between the
prescribed and the experienced conditions that triggered the chain of events that resulted in the Ariane 5 failure19.



V. De Florio / Procedia Computer Science 00 (2014)

4. Beyond both Elasticity and Resilience

We have introduced two complementary models to reason about the fidelity of open systems. The two models are
orthogonal, in the sense that they represent two independent “snapshots” of the system under consideration:

1. The Algebraic model regards the system as a predefined, immutable entity. Conditions may drift but the system
exhibits no complex “motion”—no sophisticated active behaviours are foreseen in order to reduce the drift.

2. The behavioural model captures instead the dynamicity of the system. Also in this case the system measures the
system-environment fit, but the system may actively use this measure in order to optimise its quality.

Intuitively, the first model is backed by redundant resources dimensioned through worst-case analyses; events
potentially able to jeopardise quality are masked out. The minimal non-functional activity translates in low overhead
and simple design. Embedded systems typically focus on this approach.

Conversely, the second model calls for complex abilities—among others awareness; reactive and proactive plan-
ning; quorum sensing26; collective strategy planning4, etc. Events jeopardising quality are tolerated rather than
masked; moreover, complex analyses and strategies are mandated by the overhead typically associated with non-
functional behaviours. This notwithstanding, said behaviours may be the only effective line of defence against the
highly dynamic environments characterising open embedded systems (such as cyber-physical things3) and, a fortiori,
future collective cyber-physical societies5 and fractal social organisations9.

Though orthogonal in their assumptions, the overheads associated with the design approaches corresponding to the
above two models are not side-effect free (suffice it to consider the effect of complex behaviours on the worst-case
analyses called for, e.g., by hard real-time systems). Our tentative answer to this problem is given by a new general
scheme revising the one presented in Sect. 3.1. In the new scheme the systems perform as follows:
1 Monitor the drifting of their ∆ functions and possibly other context figures providing insight on the current environmental conditions.

2 Build simple, low-overhead models of the turbulence and chaotic nature of their environments.

3 While the current conditions and trend are deemed as “unsafe”, repeat:

4.1 Build and maintain more complex reactive and proactive models to understand how the drifting is impacting on one’s system identity.

4.2 Plan and enact corrective behaviours choosing between the following two options:

4.2.1 Self-reconfiguration: the system reshapes itself by choosing new system structures and new designs best matching the new environmental
conditions. Examples of self-reconfiguration strategies may be found, e.g., in 19.

4.2.2 Establish social relationships with neighbouring systems. This may include for instance simple actions such as “join collective system”
or “leave collective system”, opportunistic strategies such as “improve one’s ∆’s to the detriment of those of neighbouring systems”, or
complex mutualistic relationships involving association, symbiosis, or mutual assistance. An example of said mutualistic relationships is
described in 15.

4.3 Measure the effectiveness of the attempted solutions, rank them with respect to past solutions, derive and persist conclusions, and update the
reactive and proactive models accordingly.

As can be clearly seen from its structure, the above scheme distinguishes two conditions: one in which system
identity is not at stake, and correspondingly complexity and overhead are kept to a minimum, and one when new
conditions are emerging that may result in identity failures—in which case the system switches to more complex
behaviours. A self-managed, dynamic trade-off between these two approach, we conjecture, may provide designers
with a solution reconciliating the benefits and costs of both options. We refer to future systems able to exercise said
dynamic trade-offs as to “auto-resilient”—a concept first sketched in15.

As a final remark, the machine learning step 4.3 in the above scheme implies that the more a system is subjected
to threats and challenging conditions, the more insight will be acquired on how to respond to new and possibly
more threatening situations. We conjecture that insight in this process may provide the designers with guidelines for
engineering antifragile cyber-physical systems14.

5. Conclusions

We presented two orthogonal models for the synchrony and real-timeliness of open computer systems such as
modern electronic systems2, cyber-physical systems, and collective organisations thereof. We discussed how each of



V. De Florio / Procedia Computer Science 00 (2014)

the two models best-match certain operational conditions—the former, stability; the latter, dynamicity and turbulence.
Finally, we proposed a scheme able to self-optimise system processing depending on the experienced environmental
conditions. As the scheme also includes a machine learning step potentially able to enhance the ability of the system
to adjust to adverse environmental conditions we put forward the conjecture that antifragile systems may correspond
to systems able to learn while enacting elastic and resilient strategies. Future work will be devoted to simulating
compliant systems with the support of self-adaptation frameworks such as ACCADA31,32 and Transformer33,34.

References

1. Heylighen, F.. Basic concepts of the systems approach. In: Heylighen, F., Joslyn, C., Turchin, V., editors. Principia Cybernetica Web.
Principia Cybernetica, Brussels; 1998,

2. Munaga, S., Catthoor, F.. Systematic design principles for cost-effective hard constraint management in dynamic nonlinear systems.
International Journal of Adaptive, Resilient and Autonomic Systems 2011;2(1).

3. Lee, E.A.. Cyber physical systems: Design challenges. Tech. Rep. UCB/EECS-2008-8; EECS Department, University of California,
Berkeley; 2008.

4. Astley, W., Fombrun, C.J.. Collective strategy: Social ecology of organizational environments. Academy of Mgmt. Rev. 1983;8:576–587.
5. Zhuge, H.. Cyber physical society. In: Semantics Knowledge and Grid (SKG), 2010 Sixth Int.l Conference on. 2010, p. 1–8.
6. Sun, H., De Florio, V., Gui, N., Blondia, C.. The missing ones: Key ingredients towards effective ambient assisted living systems. Journal

of Ambient Intelligence and Smart Environments 2010;2(2).
7. De Florio, V., Blondia, C.. Service-oriented communities: Visions and contributions towards social organizations. In: On the Move to

Meaningful Internet Systems: OTM 2010 Workshops; vol. 6428 of LNCS. Springer; 2010, p. 319–328.
8. Latour, B.. On actor-network theory. a few clarifications plus more than a few complications. Soziale Welt 1996;47:369–381.
9. De Florio, V., Bakhouya, M., Coronato, A., Di Marzo Serugendo, G.. Models and concepts for socio-technical complex systems: Towards

fractal social organizations. Systems Research and Behavioral Science 2013;30(6).
10. De Florio, V., Blondia, C.. Reflective and refractive variables: A model for effective and maintainable adaptive-and-dependable software.

In: Proc. of the 33rd EUROMICRO Conf. on Software Engineering and Advanced Applications (SEAA 2007). Lübeck, Germany; 2007.
11. Kanai, R., Tsuchiya, N.. Qualia. Current Biology 2012;22(10):R392–R396.
12. De Florio, V.. Application-layer Fault-Tolerance Protocols. IGI Global, Hershey, PA; 2009. ISBN ISBN 1-60566-182-1.
13. Cristian, F., Fetzer, C.. The timed asynchronous distributed system model. IEEE Trans. on Parallel and Distr. Systems 1999;10(6):642–657.
14. Taleb, N.N.. Antifragile: Things That Gain from Disorder. Random House Publishing Group; 2012. ISBN 9781400067824.
15. De Florio, V.. Preliminary contributions towards auto-resilience. In: Proc. of SERENE 2013, LNCS 8166. Springer; 2013, p. 141–155.
16. De Florio, V.. On the role of perception and apperception in ubiquitous and pervasive environments. In: Proceedings of the 3rd Workshop

on Service Discovery and Composition in Ubiquitous and Pervasive Environments (SUPE’12). 2012.
17. Boulding, K.. General systems theory—the skeleton of science. Management Science 1956;2(3).
18. Leibniz, G., Strickland, L.. The shorter Leibniz texts: a collection of new translations. Continuum impacts. Continuum; 2006.
19. De Florio, V.. Software assumptions failure tolerance: Role, strategies, and visions. In: Casimiro, A., de Lemos, R., Gacek, C., editors.

Architecting Dependable Systems VII; vol. 6420 of Lecture Notes in Computer Science. Springer; 2010, p. 249–272.
20. Charette, R.. Electronic devices, airplanes and interference: Significant danger or not? 2011. http://spectrum.ieee.org/riskfactor/

aerospace/aviation/electronic-devices-airplanes-and-interference-significant-danger-or-not.
21. De Florio, V.. On the constituent attributes of software and organisational resilience. Interdisciplinary Science Reviews 2013;38(2).
22. Sachs, J.. Aristotle’s Physics: A Guided Study. Masterworks of Discovery. Rutgers University Press; 1995. ISBN 0-8135-2192-0.
23. Aristotle, , Lawson-Tancred, H.. De Anima (On the Soul). Penguin classics. Penguin Books; 1986.
24. Runes, D.D., editor. Dictionary of Philosophy. Philosophical Library; 1962.
25. Rosenblueth, A., Wiener, N., Bigelow, J.. Behavior, purpose and teleology. Philosophy of Science 1943;10(1):18–24.
26. Schultz, D., Wolynes, P.G., Ben Jacob, E., Onuchic, J.N.. Deciding fate in adverse times: Sporulation and competence in bacillus subtilis.

Proc Natl Acad Sci 2009;106:21027–21034.
27. Sun, H., De Florio, V., Gui, N., Blondia, C.. Participant: A new concept for optimally assisting the elder people. In: Computer-Based

Medical Systems, 2007. CBMS ’07. Twentieth IEEE International Symposium on. 2007, p. 295 –300.
28. Sousa, P., Silva, N., Heikkila, T., Kallingbaum, M., Valcknears, P.. Aspects of co-operation in distributed manufacturing systems. Studies

in Informatics and Control Journal 2000;9(2):89–110.
29. Guseva, K.. Formation and Cooperative Behavior of Protein Complexes on the Cell Membrane. Ph.D. thesis; Institute of Complex Systems

and Mathematical Biology of the University of Aberdeen; 2012.
30. De Florio, V., Deconinck, G.. On some key requirements of mobile application software. In: Proc. of the 9th Annual IEEE International

Conference and Workshop on the Engineering of Computer Based Systems (ECBS). Lund, Sweden: IEEE Comp. Soc. Press; 2002, .
31. Gui, N., De Florio, V., Sun, H., Blondia, C.. Toward architecture-based context-aware deployment and adaptation. Journal of Systems and

Software 2011;84(2):185–197.
32. Gui, N., De Florio, V., Sun, H., Blondia, C.. ACCADA: A framework for continuous context-aware deployment and adaptation. In: Proc.

of the 11th Int.l Symp. on Stabilization, Safety, and Security of Distr. Sys., (SSS 2009); vol. 5873 of LNCS. Springer; 2009, p. 325–340.
33. Gui, N., De Florio, V.. Towards meta-adaptation support with reusable and composable adaptation components. In: Proceedings of the sixth

IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012). IEEE; 2012.
34. Gui, N., De Florio, V., Holvoet, T.. Transformer: an adaptation framework with contextual adaptation behavior composition support.

Software: Practice & Experience 2012.


